
Calc-Discrete Assignment 29 Due 6/9/21
This material is quite a bit different than the other concepts we have looked at. This material has

applications to the problem of parsing, for example the algebraic expression parser you were

working on and for building compliers. Many of these ideas, especially the idea of a formal

grammar was developed by the linguist Noam Chomsky. You might be interested to learn more

about him particularly since he was born Jewish though he is not a religious Jew.

Pages 794 – 795: Exercises 4, 5, 7. 19, 22,

Pages 814 – 815: Exercises 1, 5, 9, 11, 16, 19, 23

I. See what you can learn about converting an infix expression into a postfix or prefix

expression. Then learn about the stack and a queue data structures, and how these can be

used to evaluate either a prefix or a postfix expression. This can be used to implement

your algebraic parser.

Page 794
Section 12.1

4.​
a.​ 𝑆 → 1𝑆 → 11𝑆 → 111𝑆 → 11100𝐴 → 111000
b.​ None of the productions can place a 1 on the right of a 0

c.​ where and 1𝑛0𝑚 𝑛 ≥ 0 𝑚 > 3
5.​

a.​ 𝑆 → 1𝐴 → 10𝐵 → 101𝐴 → 1010𝐵 → 10101
b.​ No set of productions can place two s next to each other 1

c.​ or where 0(01)𝑛 1(01)𝑛 𝑛 > 0
7.​ 𝑆 → 0𝑆1 → 00𝑆11 → 000𝑆111 → 000111
19.​

a.​ Type 2
b.​ Type 3
c.​ Type 0
d.​ Type 2
e.​ Type 2
f.​ Type 0
g.​ Type 3
h.​ Type 0
i.​ Type 2
j.​ Type 2

23.​

a.​

b.​

c.​

d.​

Page 814
Section 12.3

1.​
a.​ {000, 001, 1100, 1101}
b.​ {000, 0011, 010, 0111}
c.​ {00, 011, 110, 1111}
d.​ {000000, 010000, 100000, 010100, 000001, 010001, 100001, 010101}

5.​
a.​ Contains all strings of repeating 01
b.​ Contains all strings of repeating (including empty string) 111
c.​ Contains strings that can be assembled by repeatedly taking one or more s 0

followed by a 1
d.​ Contains strings that can be assembled by repeatedly taking two or more s 2

followed by a and adding a at the end 0 1
9.​

a.​ Yes
b.​ Yes
c.​ No
d.​ No
e.​ Yes
f.​ Yes

11.​
a.​ Yes
b.​ No
c.​ Yes

d.​ No
16.​ where 𝑀 = (𝑆, 𝐼, 𝑓, 𝑠

0
, 𝐹) 𝑆 = {𝑠

0
, 𝑠

1
, 𝑠

2
} 𝐼 = {0, 1} 𝐹 = {𝑠

0
, 𝑠

1
} 𝑓 =

​

 0 1

s0 s2 s1

s1 s1 s1

s2 s1 s2

19.​ where 𝑀 = (𝑆, 𝐼, 𝑓, 𝑠
0
, 𝐹) 𝑆 = {𝑠

0
, 𝑠

1
, 𝑠

2
} 𝐼 = {0, 1} 𝐹 = {𝑠

1
} 𝑓 =

​

 0 1

s0 s0 s1

s1 s2 s1

s2 s2 s2

23.​ where ​ 𝑀 = (𝑆, 𝐼, 𝑓, 𝑠
0
, 𝐹) 𝑆 = {𝑠

0
, 𝑠

1
, 𝑠

2
, 𝑠

3
} 𝐼 = {0, 1} 𝐹 = {𝑠

2
} 𝑓 =

It’s easier for me to make the table than draw it but it’s pretty simple anyways.

 0 1

s0 s1 s3

s1 s3 s2

s2 s2 s2

s3 s3 s3

I.​ I believed we discussed this in class already. If you’re interested, I have a github repo. It’s
still incomplete and might not compile but you can see the existing functionality here
https://github.com/BOBONA/UsefulCalculator

https://github.com/BOBONA/UsefulCalculator

